DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion criteria to build, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled versions of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement learning to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial differentiating function is its reinforcement knowing (RL) action, which was utilized to refine the model's actions beyond the standard pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adjust better to user feedback and objectives, eventually enhancing both importance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, suggesting it's geared up to break down complex questions and reason through them in a detailed way. This directed thinking process allows the design to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured actions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has caught the industry's attention as a versatile text-generation design that can be incorporated into numerous workflows such as agents, logical reasoning and information analysis tasks.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, allowing efficient reasoning by routing inquiries to the most appropriate expert "clusters." This technique enables the design to focus on different issue domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller, more effective models to simulate the habits and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor model.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging content, and assess designs against key security requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce several guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit increase, develop a limit increase demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For directions, see Set up approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, prevent damaging content, and examine models against key security requirements. You can implement security procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general circulation includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the last result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and choose the DeepSeek-R1 model.
The design detail page supplies necessary details about the design's abilities, rates structure, and application standards. You can find detailed usage guidelines, including sample API calls and code snippets for combination. The design supports numerous text generation tasks, consisting of content production, code generation, and question answering, using its support discovering optimization and CoT thinking capabilities.
The page likewise consists of release options and licensing details to help you get started with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, select Deploy.
You will be prompted to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a variety of instances (between 1-100).
6. For Instance type, pick your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and facilities settings, consisting of virtual personal cloud (VPC) networking, service function authorizations, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production implementations, you might desire to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the release is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in playground to access an interactive user interface where you can experiment with different triggers and adjust design criteria like temperature level and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For instance, content for reasoning.
This is an exceptional method to explore the design's reasoning and text generation capabilities before integrating it into your applications. The playground offers immediate feedback, assisting you comprehend how the design responds to numerous inputs and letting you fine-tune your prompts for optimal outcomes.
You can rapidly evaluate the design in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up reasoning parameters, and sends a demand to produce text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 practical methods: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you select the method that finest fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model internet browser displays available models, with details like the service provider name and model abilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card reveals crucial details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this design can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to invoke the design
5. Choose the design card to see the model details page.
The design details page includes the following details:
- The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical .
- Usage guidelines
Before you deploy the model, it's recommended to evaluate the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, utilize the instantly created name or create a custom one.
- For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, go into the number of circumstances (default: 1). Selecting suitable circumstances types and counts is crucial for cost and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for accuracy. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the model.
The implementation process can take a number of minutes to finish.
When release is total, your endpoint status will change to InService. At this moment, the model is all set to accept inference requests through the endpoint. You can keep track of the release progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the deployment is total, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for inference programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:
Clean up
To avoid undesirable charges, finish the actions in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the model utilizing Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations. - In the Managed implementations area, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the appropriate implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, wiki.myamens.com and Getting begun with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop innovative services using AWS services and sped up compute. Currently, he is concentrated on establishing strategies for fine-tuning and enhancing the inference efficiency of large language models. In his complimentary time, Vivek takes pleasure in hiking, viewing films, and trying different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that assist consumers accelerate their AI journey and unlock service worth.