Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
H hesdeadjim
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar
  • Hosea Langridge
  • hesdeadjim
  • Issues
  • #1

Closed
Open
Created Feb 08, 2025 by Hosea Langridge@hosealangridgeMaintainer

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and wiki.dulovic.tech SageMaker JumpStart. You can follow comparable actions to release the distilled versions of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes support finding out to improve thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key identifying function is its reinforcement learning (RL) step, which was used to refine the design's reactions beyond the standard pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately boosting both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, suggesting it's equipped to break down complex inquiries and factor through them in a detailed way. This assisted thinking process enables the model to produce more accurate, transparent, and gratisafhalen.be detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to produce structured actions while concentrating on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation model that can be incorporated into numerous workflows such as agents, logical thinking and information interpretation jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and higgledy-piggledy.xyz is 671 billion specifications in size. The MoE architecture permits activation of 37 billion specifications, enabling effective inference by routing inquiries to the most pertinent specialist "clusters." This approach allows the design to specialize in various problem domains while maintaining general efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent hazardous content, and assess designs against key security criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create several guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit boost, produce a limitation increase demand and connect to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For directions, see Set up permissions to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid hazardous material, and evaluate models against essential safety requirements. You can execute security steps for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to evaluate user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas show reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, systemcheck-wiki.de choose Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 design.

The design detail page provides necessary details about the design's capabilities, prices structure, and implementation guidelines. You can discover detailed usage directions, including sample API calls and code bits for integration. The model supports different text generation tasks, consisting of content creation, code generation, and concern answering, using its support finding out optimization and CoT thinking abilities. The page also consists of implementation choices and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, enter a variety of instances (between 1-100). 6. For example type, select your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can configure innovative and facilities settings, consisting of virtual private cloud (VPC) networking, service role approvals, and encryption settings. For many use cases, the default settings will work well. However, for production releases, you may wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive user interface where you can try out various triggers and change design parameters like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For example, content for inference.

This is an exceptional way to explore the model's thinking and text generation abilities before integrating it into your applications. The playground provides instant feedback, assisting you understand how the design reacts to numerous inputs and letting you tweak your triggers for optimum outcomes.

You can rapidly evaluate the design in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference parameters, and sends a request to generate text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 hassle-free approaches: using the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to help you select the technique that finest suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design internet browser displays available designs, with details like the service provider name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card reveals essential details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if relevant), showing that this model can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the model

    5. Choose the model card to view the model details page.

    The design details page includes the following details:

    - The design name and supplier details. Deploy button to deploy the design. About and raovatonline.org Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you deploy the model, it's advised to review the model details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the immediately created name or develop a custom one.
  1. For example type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of instances (default: 1). Selecting appropriate circumstances types and counts is vital for cost and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The deployment process can take several minutes to finish.

    When release is complete, your endpoint status will alter to InService. At this point, the design is all set to accept reasoning demands through the endpoint. You can keep track of the release development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the release is complete, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for setiathome.berkeley.edu deploying the model is offered in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To prevent unwanted charges, complete the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
  5. In the Managed deployments area, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the proper implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build innovative options utilizing AWS services and accelerated compute. Currently, he is focused on establishing techniques for fine-tuning and optimizing the reasoning performance of large language designs. In his spare time, Vivek delights in hiking, watching movies, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building options that help consumers accelerate their AI journey and unlock business worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking