DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion parameters to develop, experiment, and it-viking.ch responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that uses support discovering to improve thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential distinguishing feature is its support knowing (RL) step, which was used to fine-tune the design's responses beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, indicating it's equipped to break down intricate inquiries and factor through them in a detailed manner. This assisted reasoning procedure allows the design to produce more precise, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has caught the industry's attention as a flexible text-generation design that can be integrated into various workflows such as agents, rational thinking and data interpretation tasks.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, making it possible for efficient inference by routing queries to the most appropriate professional "clusters." This approach permits the model to concentrate on different problem domains while maintaining total efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more effective designs to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 design, using it as a teacher design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this model with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous content, and examine models against key safety requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit boost, create a limitation increase request and reach out to your account group.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For guidelines, see Set up authorizations to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, prevent harmful material, and evaluate designs against key safety requirements. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to evaluate user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic circulation involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The design detail page provides essential details about the design's capabilities, prices structure, and implementation standards. You can discover detailed usage directions, consisting of sample API calls and code snippets for combination. The model supports numerous text generation jobs, consisting of content creation, code generation, and concern answering, using its reinforcement learning optimization and CoT reasoning abilities.
The page likewise includes implementation choices and licensing details to help you start with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, pick Deploy.
You will be prompted to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a number of circumstances (in between 1-100).
6. For example type, select your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up innovative security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function permissions, and encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you might wish to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the deployment is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive user interface where you can experiment with different triggers and change model specifications like temperature level and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum results. For example, material for reasoning.
This is an excellent way to check out the model's thinking and text generation capabilities before integrating it into your applications. The play area provides instant feedback, helping you comprehend how the design reacts to various inputs and letting you fine-tune your prompts for optimum results.
You can quickly check the model in the playground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference specifications, and sends a request to create text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart offers two hassle-free approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both approaches to assist you choose the approach that finest suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The model web browser shows available models, with details like the company name and design abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each design card reveals key details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if relevant), suggesting that this design can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model
5. Choose the design card to view the design details page.
The model details page consists of the following details:
- The design name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes important details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you deploy the model, it's recommended to evaluate the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to proceed with release.
7. For Endpoint name, use the immediately created name or develop a custom one.
- For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the number of circumstances (default: 1). Selecting suitable circumstances types and counts is vital for expense and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all setups for precision. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to release the model.
The implementation process can take numerous minutes to finish.
When implementation is total, your endpoint status will change to InService. At this point, the model is all set to accept inference demands through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the implementation is total, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, genbecle.com and implement it as displayed in the following code:
Clean up
To avoid undesirable charges, complete the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design utilizing Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments. - In the Managed implementations section, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative solutions using AWS services and sped up compute. Currently, he is focused on establishing strategies for fine-tuning and optimizing the inference efficiency of big language models. In his spare time, Vivek enjoys hiking, seeing movies, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building solutions that help clients accelerate their AI journey and unlock company value.